Tridentate benzylthiols on Au(111): control of self-assembly geometry.

نویسندگان

  • Mohamed A Mezour
  • Iryna I Perepichka
  • Oleksandr Ivasenko
  • R Bruce Lennox
  • Dmitrii F Perepichka
چکیده

A set of hexasubstituted benzene derivatives with three thiol groups in the 1, 3, 5 positions and varied aliphatic substituents in the 2, 4, 6 positions (Me3-BTMT, Et3-BTMT, ODe3-BTMT) has been synthesized and self-assembled on Au(111). The resulting self-assembled monolayers (SAMs) are characterized by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and electrochemistry. The molecular orientation and long-range order are affected by the “gear effect” of the hexasubstituted benzene ring and van der Waals interactions between the physisorbed alkyl chains drive. Me3-BTMT adopts a standing up orientation which results in the highest molecular surface density but also the lowest degree of chemisorption (1 to 2 Au–S bonds per molecule). In contrast, Et3-BTMT favors a lying down orientation with a greater number of surface-bonded thiol groups (2 to 3) per molecule, associated with the peculiar geometry of this molecule. Finally, ODe3-BTMT adsorbs mainly in a lying down orientation, forming the SAM with the highest degree of chemisorption (all thiol groups are gold-bonded) and the lowest molecular areal density.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface assembly and nanofabrication of 1,1,1-tris(mercaptomethyl)heptadecane on Au(111) studied with time-lapse atomic force microscopy

The solution self-assembly of multidentate organothiols onto Au(111) was studied in situ using scanning probe nanolithography and time-lapse atomic force microscopy (AFM). Self-assembled monolayers (SAMs) prepared from dilute solutions of multidentate thiols were found to assemble slowly, requiring more than six hours to generate films. A clean gold substrate was first imaged in ethanolic media...

متن کامل

Self-assembly of melem on Au(111) and Ag(111): the origin of two different hydrogen bonding configurations.

We studied the self-assembly of melem on the Au(111) and Ag(111) surfaces. By scanning tunneling microscopy imaging, we observed two different STM appearances of the melem molecule within the self-assembled nanostructure on Au(111), which resulted from the different intermolecular bonding configurations. Moreover, further DFT details including the intermolecular charge density difference and bo...

متن کامل

Controlled surface functionalization via self-selective metal adsorption and pattern transformation on the vicinal Si(111) surface

We demonstrate a self-selective metal adsorption and pattern transformation process on vicinal Si 111 surfaces. When Au atoms are deposited onto the self-organized periodic Si 111 surface patterns, the Au atoms self-select to adsorb predominantly onto one of the two distinct domains, the Si 111 terrace or the stepbunched facet at different Au coverage. This leads to a systematic transformation ...

متن کامل

Recrystallization of tubules from natural lotus (Nelumbo nucifera) wax on a Au(111) surface

We present here the first results on the self-assembly of tubules of natural wax from lotus leaves on a single crystal Au(111) surface. A comparison of the tubule growth on Au(111) to that on HOPG is discussed. Although the tubule formation on both Au(111) and HOPG takes place on an intermediate wax film which should mask the substrate properties, the tubule orientations differ. In contrast to ...

متن کامل

Van der Waals interactions in the self-assembly of 5-amino[6]helicene on Cu(100) and Au(111).

A combination of Scanning Tunnelling Microscopy and Density Functional Theory simulations highlights the role of van der Waals interactions in the self-assembly of an aminohelicene on Cu(100) and Au(111).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 11  شماره 

صفحات  -

تاریخ انتشار 2015